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ABSTRACT
Tensors are a popular programming interface for developing AI
algorithms. Representative AI programming frameworks require
developers to be always aware of tensor layouts, thereby reducing
their productivity in integrating an existing operation with a new
library and/or writing a new operation. We propose VTensor, a
layout-oblivious virtual tensor programming interface, together
with a global layout inference mechanism to resolve the layout re-
quired by virtual tensors. Furthermore, VTensor leverages a layout-
oriented optimization to globally minimize the number of layout
conversion operations, together with a straggler-ware scheduling
algorithm and a pool-based memory allocation scheme to globally
allocate resources. VTensor yields significant speedup and LOC
(Lines of Codes) reduction compared to TensorFlow.

1 INTRODUCTION
As AI technologies are quickly transforming almost every sphere
of our lives, it is imperative to provide an AI programming frame-
work that is easy to use and deploy across a variety of platforms.
Ideally, with tensors, developers can easily refer to the logical di-
mensions of a data structure, without having to be concerned with
the underlying physical layout.

However, in existing programming frameworks, developers are
still required to be aware of the layout of a tensor all the time.
Take TensorFlow [1] for example, developers are required to sup-
port different layouts when adding a new operation or porting
an operation to a new platform. They must keep in mind which
layout is supported by which library routine, and manually insert
an appropriate layout transformation when necessary. Figure 1
shows a skeleton of the avдpool operator in TensorFlow, where the
layout-dependent code segments are highlighted in red.

Researchers have noticed that tensor layouts are a performance-
critical issue, and proposed a number of approaches to determine
the optimal solutions [2]. However, these approaches still adopt the
traditional layout-aware programming interfaces.
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Figure 1: Layout-aware programming for the avgpool opera-
tor in TensorFlow (with the layout-dependent lines shown
in red)

TensorFlow provides an ad-hoc mechanism for developers to
maintain the layout information. This has three disadvantages:

• Poor Maintainability. As shown in Figure 1, when new oper-
ators or hardware platforms are introduced, developers have
to maintain these layout-dependent code segments scattered
throughout the framework.

• Un-optimized Layout Transformations. Under TensorFlow’s
ad-hoc layout processing mechanism, developers must ex-
plicitly insert layout transformation operations without glob-
ally considering the overall dataflow graph, thereby intro-
ducing un-optimized layout transformations.

• Fragmented Memory Allocation.Developers tend to introduce
some temporary tensors during the layout transformations,
with the corresponding memory when needed, thereby caus-
ing a large number of fragmented memory allocations.

2 VTENSOR FRAMEWORK
As shown in Figure 2, the VTensor framework consists of two
components: a layout-oblivious programming interface and the
VTensor runtime. The VTensor programming interface provides
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Figure 2: The VTensor framework.

four categories of programming interfaces to define an operation,
describe a library, and illustrate how to invoke a library routine.

• VTensor API enables developers to implement an operator
by writing the “Compute” function in order to access the
virtual tensors.

• PTensor API allows developers to declare the corresponding
physical tensors for virtual tensors.

• Library Description is required for each library to describe
the layout mapping, the layout transformation handler, and
some guidelines for selecting a layout.

• Framework APIs are provided for developers to register some
handlers with the VTensor framework.

To resolve the layout for virtual tensors, we propose a “Dynamic
Layout Resolver”, which partially evaluates the dataflow graph to
determine the physical layout for each node in the graph. Then it
determines the locations required for layout transformations, and
inserts the corresponding transformation operations as individual
nodes into the dataflow graph, called the extended dataflow graph.
Afterwards, we apply a pattern-based graph optimization to the
extended dataflow graph to globally minimize the number of lay-
out transformation nodes. Meanwhile, for efficient execution of
the extended dataflow graph, VTensor uses offline profiling and a
straggler-aware scheduling algorithm to globally allocate hardware
resources to the computation nodes.

Finally, the VTensor resolver makes it possible to determine the
number of temporary tensors in advance, so that we can use a
centralized allocation scheme for all input/output tensors of each
operation in order to avoid frequent fragmented memory alloca-
tion.

3 EVALUATION
To evaluate VTensor, we have implemented it in TensorFlow 1.14
and measured the inference latency time on the Intel Xeon E7-4820.
For performance evaluation, we follow [3] to set TensorFlow’s
environment variables and parameters.

Compared with TensorFlow, as shown in Figure 3, VTensor has
achieved a significant reduction in code sizes, from 9.95% to 70.97%,
with an average of 46.6%. Since the layout-dependent codes in Ten-
sorFlow are extremely ad-hoc, developers have to explicitly write
different library wrappers for layout selection and transformation.
Furthermore, developers are required to write the Compute func-
tion for each library. In comparison, VTensor automatically inserts
appropriate layout transformations when necessary, and shares the
same Compute function for all library.

In comparison, VTensor achieves a performance improvement
ranging from 10.82% to 47.96%, with an average of 27.5% compared

Figure 3: Comparison of LOC when writing an operator us-
ing VTensor/TensorFlow framework.

with TensorFlow. For networks with a large number of branches,
VTensor can leverage layout-oriented optimizations to reduce the
number of layout transformations and the straggler-aware algo-
rithm can find more opportunities to exploit inter-op parallelism.
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